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Brun's Constant 

By Daniel Shanks and John W. Wrench, Jr. 

Abstract. This note reviews previous work and presents new numerical data and analytical 
development concerning a constant that arises in Brun's famous theorem about twin primes. 

1. Introduction. This note began as a review of Karst's table [1] deposited in 
the Unpublished Mathematical Tables file of this journal and listed in the review 
section of this issue. This led us to review the whole subject and to compute our 
own table [2]. This note reviews both of these tables in detail and also has additional 
analysis, especially concerning Fr6berg's attempt to improve upon the Hardy- 
Littlewood conjecture for twin primes. 

Since different authors use slightly different series, we begin with explicit defini- 
tions. We define Brun's constant by 
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with the twin primes as the denominators and with 5 taken twice, since it occurs 
in two pairs. The partial sums of (1) are tabulated in both of the tables [1] and [2], 
and (1) is the way the series is written by Landau [3]. We conclude below that probably 

(2) B = 1.90218 4 2*10-5. 

In obtaining this approximation, we are assuming the truth of the Hardy-Littlewood 
conjecture. More on this later. 

Selmer [4] computed 

(3) S= 1 1 +1 + 
I 

+ 5 7 11 13 

with the first pair deleted, while Fr6berg [5] takes 5 only once in his 

(4) F= 1 + 1 +1 1 + 1 + 3 5 7 11 13 

In his preface [1], Karst also mentions 

(5) K = I + 3 + 3 + 5 + 5 + 7 

and, at one time at least, he conjectured that K "closely approximates" 7r. (More 
on that later.) One has the relations 
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8 1 4 
B = S + = F + - = K- 3 15 5 3 

We prefer B, since that is the way everyone counts the twins: (3, 5) is the first 
pair, (5, 7) the second, etc., but we must admit that Brun himself [6] writes 1/5 + 
1/7 + 1/11 + 1/13 + *., since it is convenient in the analysis to confine one- 
self to the twins 6N F 1. 

Karst's table [1] is a continuation-to the pair (393077, 393079>-of his two 
earlier tables previously reviewed [7], [8]. It not only has an unduly bulky format 
for the very limited range covered but also has numerous computational errors. 
We now find that his earlier tables [7], [8] also had errors. We discuss all this below. 

An examination of these Karst tables motivated us to review the whole subject 
and to compute our own table. We had the first two million primes on tape-to 
p = 32452843. With this, and a trivial program, about 30 seconds computer time 
on a CDC 6700 suffices to evaluate the partial sums of (1) to that limit, together 
with extrapolations to infinity by using the Hardy-Littlewood conjecture. 

TABLE 1 

Sum of First-Order 
p rp) 1r2(p) Inverse Twins Extrapolation 

1299709 100000 10250 1.71442 77999 16 1.90200 50649 40 

2750159 200000 19462 1. 72403 60977 15 1. 90213 12696 54 

4256233 300000 28349 1.72919 49994 11 1.90219 45682 57 

5800079 400000 36826 1.73259 46834 13 1.90215 62627 21 

7368787 500000 45204 1.73515 40809 43 1.90214 87517 94 

8960453 600000 53661 1.73723 37280 71 1.90218 82887 32 

10570841 700000 61885 1.73892 22762 30 1.90219 11615 64 

12195257 800000 69967 1.74034 52270 11 1. 90218 37298 27 

13834103 900000 77975 1.74157 76245 86 1.90217 50764 34 

15485863 1000000 86027 1.74267 74640 33 1.90218 07793 33 

17144489 1100000 93998 1.74365 55695 02 1.90218 45702 07 

18815231 1200000 101932 1.74453 87765 09 1. 90218 76910 55 

20495843 1300000 109744 1.74533 42233 45 1.90218 20017 80 

22182343 1400000 117522 1.74606 38123 77 1.90217 83478 16 

23879519 1500000 125358 1. 74674 46172 76 1.90218 16679 53 

25582153 1600000 133103 1.74737 13760 33 1. 90218 08082 54 

27290279 1700000 140815 1.74795 51905 44 1. 90218 02181 25 

29005541 1800000 148474 1.74849 94301 49 1. 90217 73476 84 

30723761 1900000 156143 1.74901 30783 75 1.90217 80145 38 

32452843 2000000 163766 1.74949 59128 17 1.90217 59747 86 
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2. The New Table. Our "Brun's Constant" table [2] deposited in the UMT 
file lists, for 

(6) r(p) = 500(500)2 1 06, 

the following quantities: 

P. T(P), X2(P), Sum, First Order Extrapolation. 
Here, p is the 7r(p)th prime and X20P is the number of prime-pairs (q, q + 2) for 
3 < q _ p. That is, the count includes (p, p + 2), if that is a pair, as does Weintraub's 
table [9]. " Sum'" is the partial sum of (I)-again including Il/p + I 1(p + 2) if (p, p + 2) 
is a pair. "First Order Extrapolation" is this "Sum" increased by 

(7) 2 2C2 X log* X 

where C2 is the twin-prime constant [10]. 
In Table I we include 1/200th of the deposited table: 

(8) 7r(p) = 1 05(1 05)2 . 1 0". 
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As in the original table, the last two columns are truncated to 12D from the double- 
precision 28D computations. Figure 1, which shows the First Order Extrapolation 
values for 

(9) r(p)= 3- 105(2500)106, 

was plotted on a SC 4020. 
Some comments on Figure 1. As r(p) increases from 3 - 105 to 106, the partial 

sum of (1) increases from 

1.729195 to 1.742677, 

while the extrapolation, as shown, is confined within the interval (1.90214, 1.90220). 
This shows that the Hardy-Littlewood estimate is very accurate in this region. Rel- 
atively rapid changes correlate, of course, with the expected fluctuations. For example, 
there are only 183 prime-pairs between ir(5023307) = 350000 and xr(5061919) = 

352500 instead of the expected 214 pairs; thus the abrupt drop of about 62/5. 106 
seen in Figure 1 at abcissa 350. 

Figure 2 shows the continuation for ir(p) = 106(4000)2. 106 with the same vertical 
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scale. Its ordinates are now much more stable, being confined between 1.902171 
and 1.902191. Our best estimate for B is given in (2). We repeat: this estimate assumes 
the Hardy-Littlewood conjecture. 

3. Froberg's Modification. In [5], Frdberg attempts to improve upon (7) by 
replacing 1/log2 x by { P'(x) where P(x) is the Riemann-Gram formula for ir(x): 

(10) P(x) = 1 + E (log x) 
n * ,n! . (n + 1) 

The squared series { P'(x) 12 is very complicated, and this leads Frdberg to an elaborate 
and lengthy computation. Frankly, we are not convinced that this change improves 
(7), for a number of reasons. 

A. There is no convincing heuristic argument that this change gives a more 
accurate estimate of the number of twin primes. 

B. It is well known in approximation theory that f(x) ~ F(x) does not imply 

f'(x) P F(x). 
C. Since all twins after (3, 5) are 6N F 1, one should take into account the fact 

that the number of primes 6N - 1 is usually closely given by 2 li(6N), while the 
number of 6N + 1 primes is usually closer to the smaller P(6N) - I li(6N); cf. [11]. 
Thus, if any change in 1/log2 x is wanted, it could be argued that 

(11) 2P'(x)/log x - 1/log2 x 

would be better than { P'(x) 12. (It would also be much easier to compute.) 
D. Any such change in 1/log2 x leads to a change in (7) that is dominated by 

the fluctuations that are seen in Figure 1. 
And since Frdberg lists his sum for only a few scattered values of p, the resulting 

change in (7) is nullified by these random fluctuations. Froberg, in fact, goes to 
p < 220 = 1048576 and concludes that the F of (4) equals 1.70195 ? 3. 10-. We 
believe that this is too small. We return to (11) below. 

4. Karst's Table. Karst's third installment [1] comprises the 1250 twin pairs 
from (239429, 239431) to (393077, 393079). The 2500 reciprocals and 2500 partial 
sums are printed on 207 1 1-inch X 15-inch computer sheets. This immense bulkiness 
for this limited range of data is attained by printing about 13 reciprocals and 13 
partial sums along the right-hand edge of these computer sheets while the 10 inches 
on the left are left blank. (Would that Fermat had had such margins!) 

We compared one of Karst's partial sums with our sum in [2] at ir(p) = 33000, 
p = 389171, and found this discrepancy: 

Shanks-Neild 1.6968620669 1614459837 

Karst 1.6968560412 7032377889. 

The Karst table purports to be accurate to 20D, but here it is only accurate to SD. 
With some labor, we analyzed his errors: 

A. The prime-pair 331908 ? 1 was omitted. In his preface, Karst indicates that 
at 400000 he has 3803 pairs, while Froberg (presumably incorrectly) had 3804. We 
agree with 3804, as does Gruenberger's table [12]. 

B. Starting with p = 21059 in the first installment [7], there are curious division 
errors: 
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(1 + lT-8)/p instead of l/p 

forp = 21059, 22963, 23743, etc., 

(1 + lO-12)/p instead of Il/p 

for p = 22367, 23057, 23293, etc., and even 

(1 + 4. l-8)/p instead of l/p 

at p = 389299. Thus, even before the vanished pair 331908 +4 1 the tables do not 
have the claimed accuracy. 

Finally, we comment on Karst's ir conjecture. By (2), we say that the K of (5) 
equals 3.23551 i 2. 10-5 if the Hardy-Littlewood conjecture is true. Since Karst's 
final partial sum in [1] is 1.69704, his partial sum for (5) is 3.03037, and he conjectures 
(or he did) that K may equal ir. Viggo Brun himself expressed extreme skepticism 
in a letter to Karst: "Ich halte es fMr ausserordentlich unwahrscheinlich das 'meine' 
Konstante etwas mit ir zu thun hat." Karst then wrote us, "Anyway, if Frdberg's 
computed result is correct, sometime in the future I will reach 'r." 

Here is our estimate: That should occur at a prime p such that 

3.23551 - 3.14159 ~4c2/1n p. 

Thus, p ~ 1.62.1012. At this p, 1r2(p) ~ 2.93* 10', and since Karst covers 1250 pairs 
in each installment, we think he will reach ir in (or near) his 2,340,000th volume. 
Provided, of course, that he does not lose too many more prime-pairs, and that 
he corrects that mysterious division routine. 

5. Brun's Constant. Though we refer to the last column in Table 1 as the 
"First Order Extrapolation," we must admit that we know of no higher-order ap- 
proximation that would enable us to compute a more accurate value of B. Consider 
(11) rewritten as 

2P'(x) 1 1 2 
c + o log- x P(n + 1)- 1 

log1 1og2 - log2 x-x log2 x\ n= n! ?(n+1) / 

Since 

~(n + )- _ 1 
(13) P(n + 1) 2n+' 

one sees that the change in (7) obtained by replacing 1/log2 x in the integrand by 
(12) is a small one, since the right side of (12) is very close to 

1 _ 1 
log2 x Vx log2 x 

We have accurately computed the change in the final entry in Table 1 brought about 
by such a replacement. Instead of the first-order extrapolation 1.90217597 shown 
there for r(p) = 2. 106, we now have a "second-order extrapolation" 1.90217334. 
Since this change is rather small compared with the fluctuations seen in Figure 2, 
it is unlikely that any such modification in (7) would really give B more accurately. 
(We should note that our second-order (11) and Frdberg's { p'(X)}2 differ only by 
a very small third-order quantity. Thus, his second-order term would not alter this 
difficulty, and, as already stated, our (11) is much easier to compute.) 
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What is wanted, of course, is an analytic formulation of the fluctuations. As is 
known, cf. [13], the analogous xr(x) - P(x) can be computed, but not easily, with 
the complex zeros of the zeta function. We know of nothing similar for the twin 
primes. Lacking this, we have no assurance that the bounds ?2. 10' in (2) are more 
than probably true. 

To conclude, while B is a well-defined real number, its computation to 8 or 9 
decimals seems to us extremely difficult, while 20 decimals is really impossible at 
the present time. Such a computation, if rigorous, would certainly entail a proof of 
the Hardy-Littlewood conjecture, and more besides. 

However, one could easily go beyond our 7 2(32452843) = 163766 prime-pairs. 
For example, Brent [14] has determined that 

7r2(109) = 3424506. 

Note added in proof. While this note was in process of publication, we learned of 
Bohman's work which subsequently appeared in "Some computational results 
regarding the prime numbers below 2,000,000,000," BIT, v. 13, 1973, pp. 242-244. 
Bohman goes to p < 2. i09 and he gives F = 1.7021532 there, using Frdberg's extrap- 
olation. However, there are errors in his values of ii2(x) at x = 109 and x = 2 109, 
and perhaps some truncation error in his sum. We initiated a three-way correspond- 
ence, and he and Brent now agree that Brent's 1r2(109) was the correct count. Brent 
then continued to 1.25. 1010. At 109, Brent gives B = 1.902160239321. 
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