Brun's Constant

By Daniel Shanks and John W. Wrench, Jr.

Abstract

This note reviews previous work and presents new numerical data and analytical development concerning a constant that arises in Brun's famous theorem about twin primes.

1. Introduction. This note began as a review of Karst's table [1] deposited in the Unpublished Mathematical Tables file of this journal and listed in the review section of this issue. This led us to review the whole subject and to compute our own table [2]. This note reviews both of these tables in detail and also has additional analysis, especially concerning Fröberg's attempt to improve upon the HardyLittlewood conjecture for twin primes.

Since different authors use slightly different series, we begin with explicit definitions. We define Brun's constant by

$$
\begin{equation*}
B=\frac{1}{3}+\frac{1}{5}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\frac{1}{19}+\frac{1}{29}+\frac{1}{31}+\cdots \tag{1}
\end{equation*}
$$

with the twin primes as the denominators and with 5 taken twice, since it occurs in two pairs. The partial sums of (1) are tabulated in both of the tables [1] and [2], and (1) is the way the series is written by Landau [3]. We conclude below that probably

$$
\begin{equation*}
B=1.90218 \pm 2 \cdot 10^{-5} \tag{2}
\end{equation*}
$$

In obtaining this approximation, we are assuming the truth of the Hardy-Littlewood conjecture. More on this later.

Selmer [4] computed

$$
\begin{equation*}
S=\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\cdots \tag{3}
\end{equation*}
$$

with the first pair deleted, while Fröberg [5] takes 5 only once in his

$$
\begin{equation*}
F=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\cdots \tag{4}
\end{equation*}
$$

In his preface [1], Karst also mentions

$$
\begin{equation*}
K=1+\frac{1}{3}+\frac{1}{3}+\frac{1}{5}+\frac{1}{5}+\frac{1}{7}+\cdots \tag{5}
\end{equation*}
$$

and, at one time at least, he conjectured that K "closely approximates" π. (More on that later.) One has the relations

$$
B=S+\frac{8}{15}=F+\frac{1}{5}=K-\frac{4}{3}
$$

We prefer B, since that is the way everyone counts the twins: $(3,5)$ is the first pair, $(5,7)$ the second, etc., but we must admit that Brun himself [6] writes $1 / 5+$ $1 / 7+1 / 11+1 / 13+\cdots$, since it is convenient in the analysis to confine oneself to the twins $6 N \mp 1$.

Karst's table [1] is a continuation-to the pair (393077, 393079)-of his two earlier tables previously reviewed [7], [8]. It not only has an unduly bulky format for the very limited range covered but also has numerous computational errors. We now find that his earlier tables [7], [8] also had errors. We discuss all this below.

An examination of these Karst tables motivated us to review the whole subject and to compute our own table. We had the first two million primes on tape-to $p=32452843$. With this, and a trivial program, about 30 seconds computer time on a CDC 6700 suffices to evaluate the partial sums of (1) to that limit, together with extrapolations to infinity by using the Hardy-Littlewood conjecture.

Table 1

p	Sum of $\pi_{2}(p)$		Inverse Twins	First-Order Extrapolation
1299709	100000	10250	1.714427799916	1.902005064940
2750159	200000	19462	1.724036097715	1.902131269654
4256233	300000	28349	1.729194999411	1.902194568257
5800079	400000	36826	1.732594683413	1.902156262721
7368787	500000	45204	1.735154080943	1.902148751794
8960453	600000	53661	1.737233728071	1.902188288732
10570841	700000	61885	1.738922276230	1.902191161564
12195257	800000	69967	1.740345227011	1.902183729827
13834103	900000	77975	1.741577624586	1.902175076434
15485863	1000000	86027	1.742677464033	1.902180779333
17144489	1100000	93998	1.743655569502	1.902184570207
18815231	1200000	101932	1.744538776509	1.902187691055
20495843	1300000	109744	1.745334223345	1.902182001780
22182343	1400000	117522	1.746063812377	1.902178347816
23879519	1500000	125358	1.746744617276	1.902181667953
25582153	1600000	133103	1.747371376033	1.902180808254
27290279	1700000	140815	1.747955190544	1.902180218125
29005541	1800000	148474	1.748499430149	1.902177347684
30723761	1900000	156143	1.749013078375	1.902178014538
32452843	2000000	163766	1.749495912817	1.902175974786

BRUN"S CONSTANT

Figure 1
2. The New Table. Our "Brun's Constant" table [2] deposited in the UMT file lists, for

$$
\begin{equation*}
\pi(p)=500(500) 2 \cdot 10^{6} \tag{6}
\end{equation*}
$$

the following quantities:

$$
p, \pi(p), \pi_{2}(p), \text { Sum, First Order Extrapolation. }
$$

Here, p is the $\pi(p)$ th prime and $\pi_{2}(p)$ is the number of prime-pairs $(q, q+2)$ for $3 \leqq q \leqq p$. That is, the count includes ($p, p+2$), if that is a pair, as does Weintraub's table [9]. "Sum" is the partial sum of (1)-again including $1 / p+1 /(p+2)$ if $(p, p+2)$ is a pair. "First Order Extrapolation" is this "Sum" increased by

$$
\begin{equation*}
\frac{4 c_{2}}{\log p}=2 c_{2} \int_{p}^{\infty} \frac{2 d x}{x \log ^{2} x}, \tag{7}
\end{equation*}
$$

where c_{2} is the twin-prime constant [10].
In Table 1 we include $1 / 200$ th of the deposited table:

$$
\begin{equation*}
\pi(p)=10^{5}\left(10^{5}\right) 2 \cdot 10^{6} \tag{8}
\end{equation*}
$$

As in the original table, the last two columns are truncated to 12D from the doubleprecision 28D computations. Figure 1, which shows the First Order Extrapolation values for

$$
\begin{equation*}
\pi(p)=3 \cdot 10^{5}(2500) 10^{6} \tag{9}
\end{equation*}
$$

was plotted on a SC 4020.
Some comments on Figure 1. As $\pi(p)$ increases from $3 \cdot 10^{5}$ to 10^{6}, the partial sum of (1) increases from

$$
1.729195 \text { to } 1.742677
$$

while the extrapolation, as shown, is confined within the interval (1.90214, 1.90220). This shows that the Hardy-Littlewood estimate is very accurate in this region. Relatively rapid changes correlate, of course, with the expected fluctuations. For example, there are only 183 prime-pairs between $\pi(5023307)=350000$ and $\pi(5061919)=$ 352500 instead of the expected 214 pairs; thus the abrupt drop of about $62 / 5 \cdot 10^{6}$ seen in Figure 1 at abcissa 350.

Figure 2 shows the continuation for $\pi(p)=10^{6}(4000) 2 \cdot 10^{6}$ with the same vertical
BRUN"S CONSTANT

Figure 2
scale. Its ordinates are now much more stable, being confined between 1.902171 and 1.902191 . Our best estimate for B is given in (2). We repeat: this estimate assumes the Hardy-Littlewood conjecture.
3. Fröberg's Modification. In [5], Fröberg attempts to improve upon (7) by replacing $1 / \log ^{2} x$ by $\left\{P^{\prime}(x)\right\}^{2}$ where $P(x)$ is the Riemann-Gram formula for $\pi(x)$:

$$
\begin{equation*}
P(x)=1+\sum_{n=1}^{\infty} \frac{(\log x)^{n}}{n \cdot n!\cdot \zeta(n+1)} . \tag{10}
\end{equation*}
$$

The squared series $\left\{P^{\prime}(x)\right\}^{2}$ is very complicated, and this leads Fröberg to an elaborate and lengthy computation. Frankly, we are not convinced that this change improves (7), for a number of reasons.
A. There is no convincing heuristic argument that this change gives a more accurate estimate of the number of twin primes.
B. It is well known in approximation theory that $f(x) \approx F(x)$ does not imply $f^{\prime}(x) \approx F^{\prime}(x)$.
C. Since all twins after $(3,5)$ are $6 N \mp 1$, one should take into account the fact that the number of primes $6 N-1$ is usually closely given by $\frac{1}{2} \operatorname{li}(6 N)$, while the number of $6 N+1$ primes is usually closer to the smaller $P(6 N)-\frac{1}{2} \operatorname{li}(6 N)$; cf. [11]. Thus, if any change in $1 / \log ^{2} x$ is wanted, it could be argued that

$$
\begin{equation*}
2 P^{\prime}(x) / \log x-1 / \log ^{2} x \tag{11}
\end{equation*}
$$

would be better than $\left\{P^{\prime}(x)\right\}^{2}$. (It would also be much easier to compute.)
D. Any such change in $1 / \log ^{2} x$ leads to a change in (7) that is dominated by the fluctuations that are seen in Figure 1.

And since Fröberg lists his sum for only a few scattered values of p, the resulting change in (7) is nullified by these random fluctuations. Fröberg, in fact, goes to $p<2^{20}=1048576$ and concludes that the F of (4) equals $1.70195 \pm 3 \cdot 10^{-5}$. We believe that this is too small. We return to (11) below.
4. Karst's Table. Karst's third installment [1] comprises the 1250 twin pairs from (239429,239431) to (393077,393079). The 2500 reciprocals and 2500 partial sums are printed on 20711 -inch $\times 15$-inch computer sheets. This immense bulkiness for this limited range of data is attained by printing about 13 reciprocals and 13 partial sums along the right-hand edge of these computer sheets while the 10 inches on the left are left blank. (Would that Fermat had had such margins!)

We compared one of Karst's partial sums with our sum in [2] at $\pi(p)=33000$, $p=389171$, and found this discrepancy:

$$
\begin{array}{cl}
\text { Shanks-Neild } & 1.6968620669 \\
1614459837 \\
\text { Karst } & 1.69685604127032377889 .
\end{array}
$$

The Karst table purports to be accurate to 20D, but here it is only accurate to 5D. With some labor, we analyzed his errors:
A. The prime-pair 331908 ± 1 was omitted. In his preface, Karst indicates that at 400000 he has 3803 pairs, while Fröberg (presumably incorrectly) had 3804. We agree with 3804 , as does Gruenberger's table [12].
B. Starting with $p=21059$ in the first installment [7], there are curious division errors:

$$
\left(1+10^{-8}\right) / p \text { instead of } 1 / p
$$

for $p=21059,22963,23743$, etc.,

$$
\left(1+10^{-12}\right) / p \text { instead of } 1 / p
$$

for $p=22367,23057,23293$, etc., and even

$$
\left(1+4 \cdot 10^{-8}\right) / p \quad \text { instead of } 1 / p
$$

at $p=389299$. Thus, even before the vanished pair 331908 ± 1 the tables do not have the claimed accuracy.

Finally, we comment on Karst's π conjecture. By (2), we say that the K of (5) equals $3.23551 \pm 2 \cdot 10^{-5}$ if the Hardy-Littlewood conjecture is true. Since Karst's final partial sum in [1] is 1.69704 , his partial sum for (5) is 3.03037 , and he conjectures (or he did) that K may equal π. Viggo Brun himself expressed extreme skepticism in a letter to Karst: "Ich halte es für ausserordentlich unwahrscheinlich das 'meine' Konstante etwas mit π zu thun hat." Karst then wrote us, "Anyway, if Fröberg's computed result is correct, sometime in the future I will reach π."

Here is our estimate: That should occur at a prime p such that

$$
3.23551-3.14159 \approx 4 c_{2} / \ln p
$$

Thus, $p \approx 1.62 \cdot 10^{12}$. At this $p, \pi_{2}(p) \approx 2.93 \cdot 10^{9}$, and since Karst covers 1250 pairs in each installment, we think he will reach π in (or near) his $2,340,000$ th volume. Provided, of course, that he does not lose too many more prime-pairs, and that he corrects that mysterious division routine.
5. Brun's Constant. Though we refer to the last column in Table 1 as the "First Order Extrapolation," we must admit that we know of no higher-order approximation that would enable us to compute a more accurate value of B. Consider (11) rewritten as

$$
\begin{equation*}
\frac{2 P^{\prime}(x)}{\log x}-\frac{1}{\log ^{2} x}=\frac{1}{\log ^{2} x}-\frac{2}{x \log ^{2} x}\left(1+\sum_{n=1}^{\infty} \frac{\log ^{n} x}{n!} \frac{\zeta(n+1)-1}{\zeta(n+1)}\right) . \tag{12}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{\zeta(n+1)-1}{\zeta(n+1)} \sim \frac{1}{2^{n+1}} \tag{13}
\end{equation*}
$$

one sees that the change in (7) obtained by replacing $1 / \log ^{2} x$ in the integrand by (12) is a small one, since the right side of (12) is very close to

$$
\frac{1}{\log ^{2} x}-\frac{1}{\sqrt{ } x \log ^{2} x}
$$

We have accurately computed the change in the final entry in Table 1 brought about by such a replacement. Instead of the first-order extrapolation 1.90217597 shown there for $\pi(p)=2 \cdot 10^{6}$, we now have a "second-order extrapolation" 1.90217334 . Since this change is rather small compared with the fluctuations seen in Figure 2, it is unlikely that any such modification in (7) would really give B more accurately. (We should note that our second-order (11) and Fröberg's $\left\{P^{\prime}(x)\right\}^{2}$ differ only by a very small third-order quantity. Thus, his second-order term would not alter this difficulty, and, as already stated, our (11) is much easier to compute.)

What is wanted, of course, is an analytic formulation of the fluctuations. As is known, cf. [13], the analogous $\pi(x)-P(x)$ can be computed, but not easily, with the complex zeros of the zeta function. We know of nothing similar for the twin primes. Lacking this, we have no assurance that the bounds $\pm 2 \cdot 10^{-5}$ in (2) are more than probably true.

To conclude, while B is a well-defined real number, its computation to 8 or 9 decimals seems to us extremely difficult, while 20 decimals is really impossible at the present time. Such a computation, if rigorous, would certainly entail a proof of the Hardy-Littlewood conjecture, and more besides.

However, one could easily go beyond our $\pi_{2}(32452843)=163766$ prime-pairs. For example, Brent [14] has determined that

$$
\pi_{2}\left(10^{9}\right)=3424506
$$

Note added in proof. While this note was in process of publication, we learned of Bohman's work which subsequently appeared in "Some computational results regarding the prime numbers below $2,000,000,000$, , $B I T$, v. 13,1973 , pp. 242-244. Bohman goes to $p<2 \cdot 10^{9}$ and he gives $F=1.7021532$ there, using Fröberg's extrapolation. However, there are errors in his values of $\pi_{2}(x)$ at $x=10^{9}$ and $x=2 \cdot 10^{9}$, and perhaps some truncation error in his sum. We initiated a three-way correspondence, and he and Brent now agree that Brent's $\pi_{2}\left(10^{9}\right)$ was the correct count. Brent then continued to $1.25 \cdot 10^{10}$. At 10^{9}, Brent gives $B=1.902160239321$.

Computation and Mathematics Department
Naval Ship Research and Development Center
Bethesda, Maryland 20034

1. Edgar Karst, The Third 2500 Reciprocals and Their Partial Sums of all Twin Primes $(p, p+2)$ between $(239429,239431)$ and $(393077,393079)$. See UMT 8, page 332, this issue.
2. Daniel Shanks \& Carol Neild, Brun's Constant. See UMT, 9, page 332, this issue.
3. Edmund Landau, Elementare Zahlentheorie, Teubner, Leipzig, 1927; English transl. Chelsea, New York, 1958, p. 94. MR 19, 1159.
4. Ernst S. Selmer, "A special summation method in the theory of prime numbers and its application to 'Brun's sum'," Nordisk Mat. Tidskr., v. 24, 1942, pp. 74-81. (Norwegian) MR 8, 316.
5. C. E. Fröberg, "On the sum of inverses of primes and of twin primes," Nordisk Tidskr. Informationsbehandling (BIT), v. 1, 1961, pp. 15-20.
6. Viggo Brun, "La série $1 / 5+1 / 7+1 / 11+1 / 13+1 / 17+1 / 19+1 / 29+1 / 31+$ $1 / 41+1 / 43+1 / 59+1 / 61+\cdots$, où les dénominateurs sont 'nombres premiers jumeaux' est convergente ou finie," Bull. Sci. 'Math., v. 43, 1919, pp. 124-128.
7. Edgar Karst, The First 2500 Reciprocals and their Partial Sums of all Twin Primes $(p, p+2)$ between (3, 5) and (102761, 102763), UMT 52, Math. Comp., v. 23, 1969, p. 686.
8. Edgar Karst, The Second 2500 Reciprocals and their Partial Sums of all Twin Primes $(p, p+2)$ between $(102911,102913)$ and $(239387,239389)$, UMT 35, Math. Comp., v. 26, 1972, p. 806.
9. Sol Weintraub, Four Tables Concerning the Distribution of Primes, UMT 38, Math. Comp., v. 27, 1973, pp. 676-677.
10. JOHN W. Wrench, JR., "Evaluation of Artin's constant and the twin-prime constant," Math. Comp., v. 15, 1961, pp. 396-398. MR 23 \#A1619.
11. DANIEL Shanks, "Quadratic residues and the distribution of primes," Math. Tables Aids Comput., v. 13, 1959, pp. 272-284. MR 21 \#7186.
12. F. Gruenberger \& G. Armerding, "Statistics on the first six million primes," UMT 73, Math. Comp., v. 19, 1965, pp. 503-505.
13. Hans Riesel \& Gunnar Göhl, "Some calculations related to Riemann's prime number formula," Math. Comp., v. 24, 1970, pp. 969-983. MR 43 \#3222.
14. Richard P. Brent, "The distribution of small gaps between successive primes," Math. Comp., v. 28, 1974, pp. 315-324.
